Ordered group invariants for one-dimensional spaces
نویسندگان
چکیده
منابع مشابه
Ordered Group Invariants for One-dimensional Spaces
We show that the Bruschlinsky group with the winding order is a homeomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then the Bruschlinsky group with the winding order of the inverse limit space is a dimension group and is a quotient of the dimension group with the ...
متن کاملMarked length rigidity for one dimensional spaces
In a compact geodesic metric space of topological dimension one, the minimal length of a loop in a free homotopy class is well-defined, and provides a function l : π1(X) −→ R+ ∪ ∞ (the value ∞ being assigned to loops which are not freely homotopic to any rectifiable loops). This function is the marked length spectrum. We introduce a subset Conv(X), which is the union of all non-constant minimal...
متن کامل$L-$ordered Fuzzifying Convergence Spaces
Based on a complete Heyting algebra, we modify the definition oflattice-valued fuzzifying convergence space using fuzzy inclusionorder and construct in this way a Cartesian-closed category, calledthe category of $L-$ordered fuzzifying convergence spaces, in whichthe category of $L-$fuzzifying topological spaces can be embedded.In addition, two new categories are introduced, which are called the...
متن کاملOne - Dimensional Affine Group Schemes
The construction of these groups is straightforward; to an algebra B we assign the quotient R,,, G,/G,. The main effort comes in showing that these are the only possibilities. The key to this, and the basic technical idea in the paper, is the use of N&on blow-ups of group schemes over valuation rings. This process has been used before [ 1, 21 as a tool for resolving singularities, but in fact i...
متن کاملOn Zero-dimensional Continuous Images of Compact Ordered Spaces
Throughout this paper X denotes a compact and zero-dimensional Hausdorr space. We shall be concerned with Theorem 0.1 The following assertions are equivalent. (A) X is the continuous image of a compact ordered space. (B) X is the continuous image of a zero-dimensional compact ordered space. (C) X has a T 0-separating cross-free family of clopen sets. (D) X has a T 0-separating non-Archimedian f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 2001
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm170-3-5